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Abstract
For two sets A and M of positive integers and for a positive integer n, let p(n,A,M)
denote the number of partitions of n with parts in A and multiplicities in M , that is,
the number of representations of n in the form n =

∑
a∈A maa where ma ∈ M ∪{0}

for all a, and all numbers ma but finitely many are 0. It is shown that there are
infinite sets A and M so that p(n,A,M) = 1 for every positive integer n. This
settles (in a strong form) a problem of Canfield and Wilf. It is also shown that
there is an infinite set M and constants c and n0 so that for A = {k!}k≥1 or for
A = {kk}k≥1, 0 < p(n,A,M) ≤ nc for all n > n0. This answers a question of Ljujić
and Nathanson.

1. Introduction

For two sets A and M of positive integers and for a positive integer n, let p(n,A,M)
denote the number of representations of n in the form

n =
∑
a∈A

maa (1)

where ma ∈ M ∪{0} for all a, and all numbers ma but finitely many are 0. We say
that the function p = p(n,A,M) has polynomial growth if there exists an absolute
constant c and an integer n0 so that p(n,A,M) ≤ nc for all n > n0. Canfield and
Wilf [2] raised the following question.

Question 1 (Canfield and Wilf [2]) Do there exist two infinite sets A and M so
that p(n,A,M) > 0 for all sufficiently large n and yet p has polynomial growth ?

Ljujić and Nathanson [4] showed, among other things, that this cannot be the case
if the set A has at least δ log n members in [n] = {1, 2, . . . , n} for all sufficiently
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large n, where δ > 0 is any positive constant, and asked the following two more
specific questions.

Question 2 (Ljujić and Nathanson [4]). Let A = {k!}∞k=1. Does there exist an
infinite set M of positive integers so that p(n,A,M) > 0 for all sufficiently large n,
and p has polynomial growth ?

Question 3 (Ljujić and Nathanson [4]). Let A = {kk}∞k=1. Does there exist an
infinite set M of positive integers so that p(n,A,M) > 0 for all sufficiently large n

and p has polynomial growth ?

In this note we prove that the answer to all three questions above is positive.
Our first result is simple, and shows that the answer to the first question is

positive in the strongest possible way: there are infinite sets A and M so that
p(n,A,M) = 1 for all n. This is stated in the following Theorem.

Theorem 1.1. There are two infinite sequences of positive integers A and M so
that p(n,A,M) = 1 for every positive integer n.

The proof is by an explicit construction, which is general enough to give examples
with sets A that grow at any desired rate which is faster than exponential. This rate
of growth is tight, by the observation of Ljujić and Nathanson mentioned above.

We also prove the following result, which settles Questions 2 and 3.

Theorem 1.2. Let A be an infinite set of positive integers, and suppose that 1 ∈ A

and
|A ∩ [n]| = (1 + o(1))

log n

log log n
,

where the o(1) term tends to 0 as n tends to infinity. Then there exists n0 and an
infinite set M of positive integers so that 0 < p(n,A,M) < n8+o(1) for all n > n0.

The upper estimate n8+o(1) can be improved and we make no attempt to optimize
it here. The proof of this theorem is probabilistic and can be easily modified to
provide the existence of such sets M for many other sparse infinite sets A.

The rest of this note is organized as follows. In Section 2 we present the simple
proof of Theorem 1.1. In Section 3 we describe the probabilistic construction of
the set M used in the proof of Theorem 1.2. The proof it satisfies the required
properties and hence establishes Theorem 1.2 is described in Section 4. Section 5
contains some concluding remarks.

All logarithms throughout the paper are in base 2, unless otherwise specified.
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2. The Proof of Theorem 1.1

Proof. Let N ∪{0} = B ∪C, B ∩C = ∅ be a partition of the set of all non-negative
integers into two disjoint infinite sets B and C. Let

D = {
∑
i∈B′

2i : B′ ⊂ B}

be the set of all sums of powers of two in which each exponent lies in B. Similarly,
put

E = {
∑
j∈C′

2j : C′ ⊂ C}.

This is the set of all sums of powers of two in which each exponent is a member
of C. Note that both D and E contain 0, as the sets B′ and C′ in their definition
may be taken to be empty. Since every non-negative integer has a unique binary
representation, it is clear that each such integer has a unique representation as a
sum of an element of D and an element of E.

Define, now,
A = {2d : d ∈ D},

and
M = {

∑
e∈E′

2e : E′ ⊂ E}.

Clearly both A and M are infinite. We claim that every positive integer has a
unique representation of the form (1) with these A and M , that is, p(n,A,M) = 1
for all n ≥ 1. Indeed, a general expression of the form

∑
a∈A maa with ma ∈ M for

all a satisfies ∑
a∈A

maa =
∑
d∈D

∑
e∈E′

d

2e+d.

Let n = 2t1 + 2t2 + . . . + 2tr be the binary representation of n, with 0 ≤ t1 < t2 <

. . . < tr. By the fact that each nonnegative integer has a unique representation
as a sum of an element of D and an element of E, there are, for each 1 ≤ j ≤ r,
unique di ∈ D and ei ∈ E so that ti = di + ei. The elements di are not necessarily
distinct. Let D′ = {d1, d2 . . . , dr} be the set of all distinct ones. For each d ∈ D′

define m2d =
∑

i:di=d 2ei and observe that

n =
∑
d∈D

m2d · 2d.

Therefore n has a representation of the form (1). It is not difficult to check that this
representation is unique, that is, the elements d and m2d in the expression above can
be reconstructed in the unique way described above from the binary representation
of n. This shows that indeed p(n,A,M) = 1 for all n, completing the proof of
Theorem 1.1.
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Note that by choosing the set B so that |B ∩{0, 1, . . . , r}| = r− g(r), where g(r)
is an arbitrary monotone function of r that tends to infinity, and r−g(r) also tends
to infinity in a monotone way, we get that for every integer r ≥ 1:

|A ∩ [22r

]| = |D ∩ [2r]| = |B ∩ {r}|+ 2|B∩{0,1,...,r−1}| = 2r−1−g(r−1) + O(1).

As r = log log n this shows that |A ∩ [n]| is

Θ(
log n

2g(log log n)
) + O(1),

showing that by an appropriate choice of g we can get sets A whose growth function
is at least log n/w(n) for an arbitrary slowly growing function w(n).

3. The Probabilistic Construction

The set M defined for the proof of Theorem 1.2 is a union of the form M = ∪a∈AMa.
Each set Ma is a union Ma = ∪i:2i≥aMa,i. Each of the sets Ma,i is a random subset
of [2i] obtained by picking each number in [2i], randomly and independently, to be
a member of Ma,i with probability i6

2i (if this ratio exceeds 1 then all members of
[2i] lie in Ma,i; clearly this happens only for finitely many values of i.)

We claim that M satisfies the required properties with high probability (that
is, with probability that tends to 1 as n0 tends to infinity). This is proved in the
next section. The fact that p = p(n,A,M) has polynomial growth is simple: we
show that with high probability the set M is sparse enough to ensure that the
total number of expressions of the form (1) that are at most n does not exceed
n8+o(1). The fact that with high probability p(n,A,M) > 0 for all sufficiently large
n is more complicated and requires some work. It turns out to be convenient to
restrict attention to expressions (1) of a special form that enable us to control their
behaviour in an effective manner. We can then apply the Janson Inequality (c.f.,
[1], Chapter 8) to derive the required result.

4. The Proof of Theorem 1.2

4.1. Polynomial Growth

Let A be as in Theorem 1.2, and let M = ∪a∈A ∪i:2i≥a Ma,i be as in the previ-
ous section. In this subsection we show that with high probability the function
p(n,A,M) has polynomial growth.

Lemma 4.1. For every ε > 0 there exists an n0 = n0(ε) so that with probability at
least 1− ε, M is infinite and |M ∩ [n]| < log8 n− 1 for all n > n0.
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Proof. It is obvious that M is infinite with probability 1. We proceed to prove the
main part of the lemma.

Let m be a sufficiently large integer. If 2i < m then m cannot lie in Ma,i. If 2i ≥
m, then the probability that m ∈ Ma,i is i6

2i . Since for large i, (i+1)6

2i+1 < 2
3

i6

2i it follows
that for a ≤ m the probability Pr[m ∈ Ma = ∪i:2i≥mMa,i] is smaller than 3 log6 m

m .

Similarly, for a > m, Pr[m ∈ Ma] < 3 log6 a
a . Summing over all a ∈ A, a > m and

using the fact that A is sparse we conclude that Pr[m ∈ ∪a>mMa] < o( log7 m
m ).

Since there are o(log m) members of A that are smaller than m we also get that
(since m is large) Pr[m ∈ ∪a≤mMa] < 0.9 log7 m

m . Altogether, the probability that
m lies in M = ∪aMa does not exceed log7 m

m .
It follows that the expected value of |M ∩ [n]| is smaller than O(1) + 1

8 log8 n <

0.5 log8 n (where the O(1) term is added to account for the small values of m).
As this cardinality is a sum of independent random variables we can apply the
Chernoff-Hoeffding Inequality (c.f., e.g., [1], Appendix A) and conclude that the
probability that |M ∩ [n]| is at least log8 n−1 is at most e−Ω(log8 n). For sufficiently
large n0 the sum

∑
n≥n0

e−Ω(log8 n) < ε, completing the proof of the lemma.

Corollary 4.2. Let A and M be as above. For any ε > 0 there is an n0 = n0(ε) so
that with probability at least 1 − ε, M is infinite and

∑
n≤m p(n,A,M) ≤ m8+o(1)

for all m > n0.

Proof. Let ε and n0 = n0(ε) be as in Lemma 4.1 and suppose that M satis-
fies the assertion of the lemma (this happens with probability at least 1 − ε).
Then, the number of representations of the form (1) of integers n that do not
exceed m is at most |(M ∩ [m]) ∪ {0}||A∩[m]|, as all coefficients ma and all num-
bers a with a nonzero coefficient must be at most m. This expression is at most
(log8 m)(1+o(1)) log m/ log log m = m8+o(1), as needed.

4.2. Representing All Large Integers

In this subsection we prove that with high probability every sufficiently large number
n has a representation of the form (1) where A and M are as above. To do so, it
is convenient to insist on a representation of a special form, which we proceed to
define. Put A′ = {a ∈ A : a ≤ n1/3}. Let q = |A′|, A′ = {a1, a2, . . . , aq} where
1 = a1 < a2 < . . . < aq. Thus q = ( 1

3 + o(1)) log n
log log n . Let i1 be the smallest integer

t so that 2t ≥ n. For 2 ≤ j ≤ q, let ij be the smallest integer t so that 2t ≥ n
aj log n .

Therefore, n ≤ 2i1 < 2n and n
aj log n ≤ 2ij < 2n

aj log n for all 2 ≤ j ≤ q. Since

aj ≤ n1/3 for all aj ∈ A′, it follows that ij > 1
2 log n for all admissible j.

We say that n has a special representation as a partition with parts in A and
multiplicities in M (for short: n has a special representation) if there is a represen-
tation of the form n =

∑q
j=1 mjaj where mj ∈ Maj ,ij for all 1 ≤ j ≤ q. Recall that
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here aj ≤ n1/3 for all j ≤ q.

Lemma 4.3. For all sufficiently large n, the probability that n does not have a
special representation is at most e−Ω(log5 n). Therefore, for any ε > 0 there is an
n0 = n0(ε) such that the probability that there is a special representation for every
integer n > n0 is at least 1− ε.

The assertion of Theorem 1.2 follows from Corollary 4.2 (with ε < 1/2) and
Lemma 4.3 (with ε < 1/2) that supply the existence of an infinite set M satisfying
the conclusions of the theorem.

In the proof of Lemma 4.3 we apply the Janson Inequality (c.f. [1], Chapter 8).
We first state it to set the required notation. Let X be a finite set, and let R ⊂ X be
a random subset of X obtained by picking each element r ∈ X to be a member of R,
randomly and independently, with probability pr. Let C = {Ci}i∈I be a collection
of subsets of X, let Bi denote the event that Ci ⊂ R, and let i ∼ j denote the fact
that i �= j and Ci∩Cj �= ∅. Let μ =

∑
i∈I Pr[Bi] =

∑
i∈I

∏
j∈Ci

pj be the expected
number of events Bi that hold, and define Δ =

∑
i,j∈I,i∼j Pr[Bi ∩ Bj ] where the

sum is computed over ordered pairs. The inequality we need is the following.

Lemma 4.4. (The Janson Inequality ) In the notation above, if Δ ≤ D with D ≥ μ

then the probability that no event Bi holds is at most e−μ2/2D.

Note that the above statement is an immediate consequence of the two Janson
inequalities described in [1], Chapter 8. If Δ < μ than the above statement follows
from the first inequality, whereas if Δ ≥ μ then it follows from the second.

We can now prove Lemma 4.3.

Proof. We apply the Janson inequality as stated in Lemma 4.4 above. The set X

here is a disjoint union of the sets Xj = [2ij ], 1 ≤ j ≤ q, and each element of Xj is

chosen with probability i6j

2ij
. The sets Ci are indexed by sequences (m1,m2, . . . ,mq)

with mj ∈ Xj which satisfy
q∑

j=1

mjaj = n. (2)

If (m1,m2, . . . ,mq) is the i-th such sequence, then the set Ci is defined by the rule
Ci ∩ Xj = {mj}. Note that there are exactly

∏q
j=2 2ij such sets, as for any choice

of mj ∈ Xj , 2 ≤ j ≤ q there is a unique choice of m1 ∈ X1 so that (2) holds.
Therefore, in the notation above

μ =
q∏

j=2

2ij

q∏
j=1

i6j
2ij

=
1

2i1

q∏
j=2

i6j = n1−o(1),

where the last equality follows from the fact that 1
2 log n ≤ ij ≤ log n for all 2 ≤

j ≤ q and the fact that q = ( 1
3 + o(1)) log n

log log n .
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We proceed with the estimation of the quantity Δ that appears in the inequality.
This is the sum, over all ordered pairs of sequences m

(1)
j and m

(2)
j with m

(1)
j ,m

(2)
j ∈

Xj , where
∑

m
(1)
j aj =

∑
m

(2)
j aj = n and for at least one r, m

(1)
r = m

(2)
r , of the

probability that both m
(1)
j and m

(2)
j belong to Maj ,ij for all j.

Write Δ =
∑q

�=1 Δ�, where Δ� is the sum of these probabilities over all pairs
m

(1)
j and m

(2)
j as above for which � = min{j : m

(1)
j �= m

(2)
j }.

Claim 1: We have

Δ1 ≤ 1
2i1

q∏
j=1

i6j
∑

∅�=I⊂{2,3,...,q}

i61
2i1

∏
j>1,j �∈I

i6j .

Indeed, for each choice of the sequence m
(1)
j the contribution to Δ1 arises from

sequences m
(2)
j for which m

(1)
r = m

(2)
r for all r in some nonempty subset I of

{2, 3, . . . , q}. There are
∏q

j=2 2ij choices for the sequence m
(1)
j (as the value of m

(1)
1

is determined by the value of the sum
∑q

j=1 m
(1)
j aj). The probability that each

m
(1)
j lies in Maj ,ij is

i6j

2ij
. For each fixed choice of m

(1)
j and for each nonempty

subset I as above, there are
∏

j>1,j �∈I(2
ij − 1) possibilities to choose the numbers

m
(2)
j , j > 1, j �∈ I, and the value of m

(2)
1 is determined (and has to differ from

m
(1)
j , which is another reason the above is an upper estimate for Δ1 and not a

precise computation). The probability that m
(2)
j ∈ Maj ,ij for all these values of j

is i61
2i1

∏
j>1,j �∈I

i6j

2ij
, implying Claim 1.

Plugging the value of μ in Claim 1, we conclude that

Δ1 ≤ μ2
∑

∅�=I⊂{2,3,...,q}

∏
j∈I

1
i6j

= μ2([
q∏

j=2

(1 +
1
i6j

)]− 1) ≤ μ2 1
log5 n

. (3)

The final inequality above follows from the fact that ij > 0.5 log n for all j and that
q = o(log n).

Claim 2: For any 2 ≤ � ≤ q,

Δ� ≤ 1
2i1

q∏
j=1

i6j ·
i6�
2i�

∑
I⊂{�+1,�+2,...,q}

∏
r∈{�+1,�+2,...,q}−I

i6r.

The proof is similar to that of Claim 1 with a few modifications. For each choice
of the sequence m

(1)
j the contribution to Δ� arises from sequences m

(2)
j for which

m
(1)
r = m

(2)
r for all r < �, m

(1)
� �= m

(2)
� , and there is a possibly empty subset I

of {� + 1, � + 2, . . . , q} so that m
(1)
r = m

(2)
r for all r ∈ I (and for no other r in

{� + 1, � + 2, . . . , q}.) As in the proof of Claim 1 there are
∏q

j=2 2ij choices for the
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sequence m
(1)
j , and the probability that each m

(1)
j lies in Maj ,ij is i6j

2ij
. For each fixed

choice of m
(1)
j and for each subset I as above, there are

∏
r∈{�+1,�+2,...,q}−I(2

ir − 1)

possible choices for m
(2)
r , r ∈ {� + 1, � + 2, . . . , q}− I, and the probability that each

of those lies in the corresponding Mar,ir is i6r
2ir . The product of these two terms is

at most
∏

r∈{�+1,�+2,...,q}−I i6r. Finally, the value of m
(2)
� is determined by the values

of all other m
(2)
j and by the fact that

∑q
j=1 m

(2)
j aj = n. (Note that this value has

to lie in [2i� ], otherwise we do not get any contribution here. This is fine, as we are
only upper bounding Δ�.) Finally, the probability that m

(2)
� ∈ Ma�,i�

is i6�
2i�

. This
completes the explanation for the estimate in Claim 2.

Plugging the value of μ we get, by Claim 2, that for any 2 ≤ � ≤ q

Δ� ≤ μ2 2i1

2i�

1
i61i

6
2 · · · i6�−1

∑
I⊂{�+1,�+2,...,q}

∏
r∈I

1
i6r

≤ μ2 2i1

2i�

1
i61i

6
2 · · · i6�−1

q∏
r=�+1

(1 +
1
i6r

) ≤ 4μ2a� log n(
26

log6 n
)�−1.

In the last inequality we used the fact that

2i1

2i�
≤ 2a� log n and

q∏
r=�+1

(1 +
1
i6r

) < 2.

Since a2 = O(1) we conclude that Δ2 ≤ O( μ2

log5 n
). For any � ≥ 3 we use the fact

that a� < �(1+o(1))� ≤ (log n)(1+o(1))� to conclude that Δ� ≤ O( μ2

log(5−o(1))�−7 n
) ≤

O( μ2

log7 n
).

Summing over all values of � we conclude that Δ = O( μ2

log5 n
). The assertion of

Lemma 4.3 thus follows from Lemma 4.4. As mentioned after the statement of this
lemma, this also completes the proof of Theorem 1.2.

5. Concluding Remarks

• Since the proof of Theorem 1.2 is probabilistic and the probabilistic estimates
are strong enough it follows that for any finite collection of sequences Aj , each
satisfying the assumptions of Theorem 1.2, there is a sequence of multiplicities
M that is good for each of them, where the number n0 here depends on all
sequences Aj .

• The proof of Theorem 1.2 can be easily modified to work for any sequence A

that grows to infinity at least as fast as kΩ(k) and satisfies gcd(A) = 1.
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• Erdős and Turán [3] asked if for any asymptotic basis of order 2 of the positive
integers (that is, a set A of positive integers so that each sufficiently large
integer has a representation as a sum of two elements of A), there must be, for
any constant t, integers that have more than t such representations. Theorem
1.1 shows that a natural analogous statement does not hold for partition
functions with restricted multiplicities.
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